题目要求:
给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案。
示例 1:
输入:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
示例 2:输入:n = 1, k = 1
输出:[[1]]
提示:1 <= n <= 20
1 <= k <= n来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/combinations
解题代码:
class Solution {
private:
vector<vector<int>> res;
// 求解C(n, k),当前已经找到的组合存储在c中,需要从start开始搜索新的元素
void generateCombinations(int n, int k, int start, vector<int>& c) {
if (c.size() == k) {
res.push_back(c);
return;
}
for (int i = start; i <= n; ++i) {
c.push_back(i);
generateCombinations(n, k, i + 1, c);
c.pop_back();
}
return;
}
public:
vector<vector<int>> combine(int n, int k) {
res.clear();
if (n <= 0 || k <= 0 || k > n)
return res;
vector<int> c;
generateCombinations(n, k, 1, c);
return res;
}
};
算法优化:
class Solution {
private:
vector<vector<int>> res;
// 求解C(n, k),当前已经找到的组合存储在c中,需要从start开始搜索新的元素
void generateCombinations(int n, int k, int start, vector<int> &c) {
if (c.size() == k) {
res.push_back(c);
return;
}
// 还有k-c.size()个空位,[i...n]中至少有k-c.size()个元素
// i做多为 n-(k-c.size()) +1
for (int i = start; i <= n - (k - c.size()) + 1; ++i) {
c.push_back(i);
generateCombinations(n, k, i + 1, c);
c.pop_back();
}
return;
}
public:
vector<vector<int>> combine(int n, int k) {
res.clear();
if (n <= 0 || k <= 0 || k > n)
return res;
vector<int> c;
generateCombinations(n, k, 1, c);
return res;
}
};